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Abstract

We derive a hierarchy of approximate models of wave mean-flow interaction (WMFI) by using asymptotic expansions and
phase averages either in Euler’s equations for a stratified rotating inviscid incompressible fluid, or in Hamilton’s principle
for these equations. Two small dimensionless parameters are used in these expansions. The first parameter is the ratio of
time scales between internal waves at most wave numbers and the mesoscale mean flow of the fluid. This “adiabatic ratio”
is small and is comparable to the corresponding ratio of space scales for the class of initial conditions that support internal
waves. The other small parameter used in these expansions is the ratio of the amplitude of the internal wave to its wavelength.
An application of Noether’s theorem to the phase-averaged Hamilton's principle shows that the resulting equations conserve
the wave action, convect a potentional vorticity and can, depending on the order of approximation, convect wave angular
momentum. Passage from the phase- averaged Hamilton’s principle to the Hamiltonian formulation brings the WMFI theory
into the Lie—Poisson framework in which formal and nonlinear stability analysis may be applied. This framework also suggests
a two-fluid model of the interaction of waves and mean flow similar to that for the superfluid and normal fluid components
of liquid He* without vortices. We also discuss the relations of these results to the Charney—Drazin nonacceleration theorem,
Whitham averaging, WKB stability theory, and Lagrangian-mean fluid equations for prescribed wave displacements.
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1. Introduction

Waves in a hydrostatically stable stratified fluid whose restoring force is due to gravity are called “internal waves”
These waves are ubiquitous in the ocean and have typical vertical displacements of about 10 m, with periods ranging
from tens of minutes up to the rotational period. The associated horizontal fluid velocity is typically 0.05 m/s, with
horizontal displacements of about 1 km. There are many sources of internal waves in the ocean, such as oscillations
of the thermocline, tidally driven flow over topography and instabilities of energetic columnar eddies whose sizes
tend to be nearly equal to the local internal Rossby deformation radius. For reviews of internal waves in the ocean
and discussions of recent progress in the analysis of their dynamics, see, e.g. [20,21,38].
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Since the time and space scales of the ocean’s background mean motion which modulates the internal wave are
large compared to its wavelength and period, the internal wave can be regarded as a wave train whose amplitude,
frequency and wave vector vary slowly compared to its phase oscillations. Thus, there is a small “‘adiabatic”parameter
€ K 1, which is the ratio of time and space scales between the wave oscillations and the mean flow. This adiabatic
parameter is given by 1/e = wT, where w is the wave frequency and 7 is the characteristic time scale of the mean
flow (eddy turning time, for example), and also by € = /L, where A is the wavelength of the internal wave and L
is the characteristic scale of the mean flow. Under these circumstances, the trajectory of a Lagrangian fluid element
X in a stably stratified flow decomposes naturally into the sum of a slowly varying mean displacement x and rapid
fluctuation £. Thus, one may write X = x + a€(x, 1), where ¢ <« 1 is the displacement of the fluid due to the wave
divided by the wavelength, and & has zero mean. This wave mean-flow (WMF) decomposition suggests an approach
based on asymptotic expansion in relative displacement amplitude «, combined with either a WKB analysis, or the
method developed by Whitham [46,47], of averaging over the rapid — order O(1/¢) — phase of the wave in the fluid
action principle in order to derive the equations for wave mean-flow interaction (WMFI) dynamics. This combined
approach using asymptotic expansions and WKB analysis is standard for the WMFI problem, see, e.g., the review
by Grimshaw [26] and related remarks in the review by Salmon [43].

In this paper, we derive an asymptotic hierarchy of new equations for WMFI dynamics in two different ways. In
our first derivation, we substitute the assumed WMF decomposition into Euler’s equations for an inviscid stratified
rotating incompressible fluid and demand that the coefficients of mean and fluctuating terms vanish separately, to
an appropriate order in € and «. This approach is called the “‘direct expansion”. Then, at each order of accuracy
we rederive the same equations as those obtained from the direct expansion by using Hamilton’s principle (HP)
asymptotics, which in this case consists of substituting the WMF decomposition into HP for the unapproximated
Euler dynamics, truncating the combined expansion in € and «, and phase averaging before taking variations. The
derivation by HP asymptotics uses an extension of Whitham’s method of averaging in the action principle to produce
a self-consistent description of ideal WMFI dynamics. The extension is to keep the Lagrangian labels (the initial
coordinates) fixed in the phase averaging, regardiess of whether their dependence is slow or fast. This approach
parallels Whitham averaging for a finite dimensional system and has the advantage of allowing sufficiently general
spatial dependence of the pressure and density fields in the WMFI equations to support internal waves.

While the derivation of the WMFI equations from Euler’s equations by direct asymptotic expansion confirms
the validity of their rederivation from HP asymptotics, the equations for WMFI dynamics resulting from expansion
and phase averaging in HP generally contain at each truncation order certain additional higher-order terms which
would be neglected at that order in using the direct asymptotic expansion approach. These “remainder” terms in the
equations arising in HP asymptotics serve to provide exact conservation laws for WMFI arising from symmetries
of HP. In fact, some of these symmetries are created in the process of asymptotic expansion and phase averaging
in HP. Of course, the corresponding conservation laws are also approximately valid to a certain order in the direct
expansion approach.

Retaining the higher-order terms in the equations arising from HP asymptotics at a given step provides exact
conservation laws, but does not actually improve the order of accuracy of the equations. This is because not all
the higher-order terms appear in the remainder arising from HP asymptotics, only those terms that provide the
conservation laws due to symmetries of HP at a given order of its truncation. Furthermore, such symmetries may be
produced in the process of making the approximations. Consequently, there is an “alternating feedback” available
between the results obtained from direct asymptotic expansions in the equations of motion and results obtained from
HP asymptotics when the unapproximated theory arises from HP. At each order in the expansion, HP asymptotics
produces equations with a remainder containing the higher-order terms which provide exact conservation laws for
the equations at that order. In the next iteration of the direct expansion, the rest of the higher-order terms in the
equations are obtained, including the terms appearing in the HP remainder from the previous order. The next iteration
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of the direct expansion may then be used as potential input for another iteration of the HP asymptotics. Thus, the
derivation by HP asymptotics does not produce anything which could not be obtained by the direct expansion
method by going to a higher order. However, the derivation by HP asymptotics has the advantage of preserving the
conservation laws due to symmetries in the unapproximated HP at each order, as well as the possibility of adding
new conservation laws due to symmetries induced by averaging. Of course, averaging may be done over a variety
of other parameters besides phase.

Having derived the WMFI equations both by direct asymptotic expansion in Euler’s equations and by phase
averaging in HP at a certain order, we pass to their Hamiltonian formulation via the Legendre transformation. In
this Hamiltonian formulation, the energetics of WMFI is clear and its dynamics is portrayed as mean hydrodynamic
motion in the Eulerian description evolving the on the slow space and time scales, at which the “rectified” effects
of rapidly oscillating waves appear, roughly speaking, as though the waves were another fluid degree of freedom
coupled to the mean flow. This degree of freedom is associated with the wave vector (defined as the slow spatial
gradient of the phase) and the density of the conserved wave action. The wave action density is conserved, since
it is the momentum density canonically conjugate to the phase of the wave field, which becomes an ignorable
coordinate in the process of averaging. The product of the wave action density and the wave vector is the wave
“pseudomomentum” density, which generates spatial shifts in wave quantities under the Poisson bracket operation
while leaving mean-flow quantities invariant. Thus, the Hamiltonian formulation presented here provides a self-
consistent picture of WMFI dynamics as a nonlinear fluid theory coupled to a subsystem degree of freedom whose
coordinate field variable (the phase of the wave train) is made ignorable by averaging; so its canonically conjugate
momentum density (the wave action density) satisfies an associated conservation law. This Hamiltonian formulation
is a self-consistent alternative to previous investigations of WMFI.

WMF interaction between internal waves and the mean flow in the regime where the length and time scales
of the waves are much shorter than those of the mean flow was first examined in detail by Bretherton [14] and
Bretherton and Garrett [16] for small amplitude waves. Subsequently, this work was extended to finite amplitude
waves, incorporating the perturbative effects of friction and compressibility, as well as the leading order effect of
rotation, by Grimshaw [23]. Mean flows induced by internal waves propagating in a shear flow without rotation were
also discussed by Grimshaw [24,25]. Relatively recent reviews of WMFI dynamics in the ocean appear in [26,37].

The energetics of WMFI have been traditionally studied by introducing a radiation stress tensor due to the waves
and describing its role in the wave energy equation and the mean-flow equation. This approach follows ideas of
Dewar [18] and Bretherton [15] for slowly varying linearized waves, and was further developed in the generalized
Lagrangian mean (GLM) formulation of Andrews and MclIntyre |7,8], who treated the Lagrangian displacement
due to the waves as a prescribed field. Such radiation stress terms due to internal waves also emerge naturally in
the momentum balance relations derived at each level of the present WMFI theory.

The particle-mechanics form of HP for the Lagrangian description of ideal fluid dynamics has long been known.
See, e.g., [31,43] for reviews. However, the Lie algebraic significance of the Poisson bracket in the Hamiltonian
formulation of Eulerian ideal fluid dynamics only emerged recently, firstin the work of Arnold {9] for incompressible
planar ideal flow. Holm and Kupershmidt [28,29), Holm et al. [30] and Marsden et al. [35] extended this result of
Armold to a wide variety of compressible ideal fluid and plasma theories, thereby making the Lie algebraic and
group theoretic interpretations of the Lie—Poisson Hamiltonian formulation of Eulerian ideal fluid dynamics into
a general principle. This general principle — that ideal Eulerian fluid dynamics is Lie~Poisson — has been found
useful, for example, in establishing nonlinear stability theorems for ideal fluid and plasma equilibria by using a
variant of the Liapunov method of stability analysis for Hamiltonian systems first convincingly demonstrated in
this setting by Arnold [10,11]. The nonlinear stability method has since been applied to a great many hydrodynamic
stability problems. For extensive reviews, see [2,32]. Shepherd [45] reviews recent applications of this method in
geophysical fluid dynamics. An adaptation of the stability method has also been used by McIntyre and Shepherd
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[36] to make a finite-amplitude extension of a conserved quantity found by Andrews [3] for small disturbances to
a steady basic flow.

We emphasize that such nonlinear conserved quantities in Eulerian ideal fluid dynamics are not peculiarities of
particular fluid theories and approximations. Rather, they are general properties of all Eulerian ideal fluid theories,
including WMFI dynamics, because of the invariance of the Eulerian description under shifts of Lagrangian fluid
parcels along streamlines of steady Eulerian flows. This invariance is obvious when HP — which only depends on
the Eulerian variables — is formulated in terms of variations of Lagrangian fluid labels at fixed Eulerian position and
time. In this formulation, the invariance of HP under such shifts of Lagrangian labels leads via Noether’s theorem to
an infinity of conservation laws for the potential vorticity integrals. In the corresponding Hamiltonian formulation of
Eulerian fluid dynamics, these potential vorticity integrals are the “Casimirs” [32] of the Lie—Poisson bracket which
Poisson-commute with all Eulerian variables. In the present case, averaging in HP produces additional conservation
laws, since by definition averaging creates ignorable coordinates.

Sections 2 and 3 give two derivations of our leading order WMFI equations, and then discuss their conservation
laws and Kelvin circulation theorem. The first derivation is based on the Euler equations, while the second is based
on HP for the Euler equations. In Section 2.1, the fluid trajectory and pressure are decomposed into wave and
mean-flow components. Substitution of this decomposition into the equations of motion for an ideal incompressible
stratified flow in a rotating frame in Section 2.2, followed by projection of these equations onto their mean and
rapidly varying components and truncation of their expansion in € and « in Section 2.3, yields the leading order
WMFI equations. These equations are summarized concisely in Egs. (4.44)—(4.46). The WMFI equations derived in
Section 2 by the direct expansion approach are rederived in Section 3 by substituting the same WMF decomposition
into HP for Euler’s equations, truncating its expansion in powers of € and «, and then averaging over the rapid phase
of the wave components before taking variations.

Various properties of the leading order WMFI equations are discussed in Section 4, including quasi- and semi-
geostrophic balances (Section 4.1), initial conditions and balance relations (Section 4.2), as well as mean vorticity
dynamics and the magnitude of wave effects relative to the beta effect (Section 4.3). The second derivation of the
leading order WMFI equations using the phase-averaged HP places this theory into a framework — discussed in
Section 4.4 — in which Noether’s theorem may be applied systematically to derive the conservation laws of energy,
potential vorticity, and wave action for the self-consistent WMFI theory from symmetries of its phase-averaged
HP. Wave action conservation corresponds to the Eliassen—Palm relation in meteorology [3.5.6]. In Section 4.5 we
discuss the solution procedure for determining the Eulerian mean pressure, which is necessary in order to close
the WMFI theory. In Section 4.6 we derive the Kelvin circulation theorem for the leading order WMFI theory
in the framework of the phase-averaged HP. This Kelvin circulation theorem is the basis for the Charney—Drazin
“nonacceleration” theorem in WMF1 which is well known in meteorology [ 17] —namely, that a steady wave produces
no Lagrangian mean circulation, in the absence of dissipation, provided the wave pseudomomentum density has no
curl. The leading order WMFI circulation theorem (4.40) extends to arbitrary fluid contours the circulation theorem
of Grimshaw [23] for horizontal fluid contours — in the incompressible limit with the Boussinesq approximation,
and when viscosity is absent. The wave pseudomomentum density at leading order in our WMFI theory is the
product of wave action density and wave vector (the slow spatial gradient of the wave phase). The leading order
total momentum balance relation (4.21) involves both fluid momentum density and wave pseudomomentum density
in the momentum stress tensor (4.23). The latter terms comprise the radiation stresses invoked in previous WMFI
theories. One may refer to, e.g., [4-6,15,18,36] for further discussions of Eliassen—Palm relations, internal wave
radiation stress and the Charney-Drazin theorem.

In Section 5 the Hamiltonian formulation of WMFI dynamics is derived by Legendre-transforming the constrained
and phase-averaged HP of Section 3. This Hamiltonian formulation yields a noncanonical Poisson bracket which
is the sum of two Lie-Poisson Hamiltonian operators, one involving the mean-flow Eulerian fluid momentum
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density, the volume element of a fluid parcel and its buoyancy, and another involving the wave pseudomomentum
density and the wave action density. The associated Lie-Poisson brackets are each dual to the semidirect-product
Lie algebra of vector fields acting on functions and densities. (Here “dual” is meant in both the algebraic and
metric senses, cf. [29,35].) Dual coordinates in the Lie—Poisson Hamiltonian operator for the mean-flow subsystem
of WMFI are: Eulerian momentum density (dual to vector fields); the conserved incompressible volume element
(dual to functions); and the stratified buoyancy (dual to densities). Dual coordinates in the Lie—Poisson Hamiltonian
operator for the wave subsystem of WMFI are: wave pseudomomentum density (dual to vector fields) and the
conserved wave action density (dual to functions). This separation of the Hamiltonian structure into a sum of two
semidirect-product Lie-Poisson Hamiltonian operators which operate on different subsets of the fluid variables
provides two limiting cases: one case in which the wave field propagates in a prescribed mean flow; and another in
which the wave variables are prescribed and act as forces on the evolving mean flow of the fluid. The self-consistent
coupling between these two subsystems occurs through the Hamiltonian and its constraints. Consequently, WMFI
dynamics may be regarded as mean hydrodynamic motion coupled energetically and through constraints to the
wave degree of freedom. This coupling has richer implications than a mere thermodynamic coupling, as would
occur if, say, another degree of freedom were introduced into the fluid’s equation of state, since neither the wave
action density nor the wave pseudomomentum which transports it are “frozen” into the fluid’s mean motion, as the
wave propagates through the fluid. In fact, the semidirect-product Lie-Poisson Hamiltonian structure we find for the
combined WMFI system is formally identical to that found for the two-fluid theory of superfluid He* by Holm and
Kupershmidt [28]. Thus, wave mean-flow theory and the two-fluid theory of superfluid He* are analogous, in that
both theories are Lie—Poisson two-fluid models whose order parameter is an S' phase. (The wave vector in WMFI
theory is analogous to the (curl-free) superfluid velocity.) However, there is an important physical difference between
the two theories: unlike the superfluid momentum density in the He* two-fluid model, the wave pseudomomentum
density of the two-fluid WMFI system transports no mass or volume; it only transports wave action. Consequently,
the two mathematically analogous theories have quite different physical behaviors.

At the end of Section 5, equilibrium solutions of the WMFI equations are characterized as critical points of the
sum of the WMFI Hamiltonian, the integrated wave action density and the Casimir functions of the Lie—Poisson
bracket. These Casimir functions are integrals of arbitrary functions of the locally conserved potential vorticity
for WMFI dynamics. Establishing the WMEFTI equilibria as critical points of the sum of these conserved quantities
places the theory into the framework of Hamiltonian nonlinear stability analysis, [32], whose application to these
equations will be discussed elsewhere [22].

In Section 6 the computation of the averaged action and the associated WMFI equations is carried beyond the
leading order, to higher powers in the asymptotic expansion in the adiabatic parameter € and the wave amplitude o.
The resulting expressions for the kinetic and potential energies in the averaged action are exact within the assumed
decomposition; the only truncation occurs in the incompressibility constraint, at order O(a?) in the averaged action,
which affects the equations resulting from HP asymptotics at order O(ar*¢). At this order, the Lagrangian mean flow
is not quite incompressible; instead, a slight compressibility of order O(a?¢?) arises from the wave motion. In this
section, Noether’s theorem is used to derive the conservation laws for WMFI energy, potential vorticity, and wave
action to order O(a*¢). The Hamiltonian formulation of WMFI dynamics at this order again separates into wave
and fluid subsystems [22] and the total momentum balance relation (6.21) involves both fluid and wave (radiation)
terms in the higher-order momentum stress tensor (6.23). When the mean flow is prescribed, our higher-order
WDMFI equations reduce to equations analogous to those for WKB linear wave train stability analysis discussed by
Lifschitz [33]. However, unlike the equations in [33], this restriction of the higher-order WMFI equations does not
reduce to ordinary differential equations along fluid characteristics. When, instead of prescribing the mean flow,
the wave displacement is prescribed, these higher-order WMFI equations reduce to the GLM equations [7] for
the mean flow. In the process of considering this last restriction of the higher-order WMFI theory, we incidentally
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establish the existence of variational and Hamiltonian formulations of the GLM theory. In Appendix A, we discuss
the properties of the WMFI theory at an intermediate order, when terms of order O(ale?) are neglected in HP,
as well as terms of order O(a’*). At this intermediate order, an additional phase symmetry exists in HP, whose
associated conservation law implies preservation on fluid parcels of a certain wave polarization quantity analogous
to wave angular momentum.

The main results of this paper are the derivations, Hamiltonian formulations, circulation theorems and conservation
laws of self-consistent WMFI equations at various orders in « and €, which are summarized in Sections 4.7 and
6.1, and in Appendix A. Other aspects of these equations will be discussed elsewhere.

2. Derivation of the leading order WMFI equations by the direct expansion approach
2.1. Decomposition of the fluid-parcel trajectory and pressure

In the Lagrangian description, Euler’s equations for incompressible stratified fluid motion in a rotating frame
follow from HP, £ = 0, with the action £ given by

L:/dt/d3L [%IXlz—pl(LA)gZ(LA,t)+X~R(X(LA,1))+p(del<%)— 1)] 2.1)

where X‘(L4, ) is the position at time ¢ of the fluid parcel located initially at position 52L‘4, A =1, 2,3. Thus,
with a slight abuse of notation we may write

_AX(LA

X(LA0)=L" and X(LA 1) : .
dt LA

(2.2)
where X (L#, ) is the current velocity of the fluid parcel labeled by L#. In HP the independent variations of £ are
taken in the fluid trajectory X and pressure p at constant Lagrangian label L4 and time ¢. The Coriolis parameter for
the rotating frame (twice the rotation vector) is the quantity 2£2(X) = V x R(X), where R(X) is the vector potential
for the Cariolis parameter, which is taken to be independent of time. The buoyancy of the fluid is pj (L“), and the
gravitational acceleration is g. Variations of £ with respect to X and p yield Euler’s equations in the Lagrangian
description.

We choose to decompose the fluid trajectory into the sum of a mean flow x and a small, order O(«), displacement
due the presence of an internal wave field whose phase (oscillation rate) is rapid compared to the rate of change of
the mean flow in space and time. Namely,

X=x+afx1m (2.3)

with
t
x(A 1) =14 +/x(e1", er’ydr’, (2.4)
o0

where o and € are small, real, positive parameters, € < 1, @ < 1, ? is the initial condition for x and %(el4, et) =
dx(I*. 1)/dr. Here € denotes the adiabatic parameter (ratio of space and time scales between the wave oscillations
and background flow) and « denotes the ratio of the wave amplitude and its typical wavelength. Note that ex depends
only on €/* and et and, conversely, €/ depends only on ex and €. So it is consistent to regard the dependence on the
Lagrangian labels as slow when it appears as €/ 4 and as rapid when it appears as / 4 (without €). Since the nonlinear
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Euler equations for an incompressible stratified flow under gravity in a rotating frame support plane internal waves
on a uniform steady background as exact solutions, we may take the displacement £ in the decomposition (2.3) to
be a wave train with slow modulations in amplitude and phase

E(x.t) =a(ex,et)exp [1M] +a*(ex, er)exp [—im} (2.5
€ €
and define its frequency as
d ) . :
w(ex, €t) = ——@(ex. 1) = —,—M (2.6)
det at €
and wave vector as
0 0 .
kiex.et) = —p(ex.et) = —M 2.7)
dex ax €

One of our main objectives is to show how the WMF decomposition (2.3) can be preserved, to a certain order, under
time evolution according to the Euler equations, when £ in Eq. (2.5) describes the fluid displacement due to a train of
slowly modulated internal waves. The conditions for this preservation are the WMFI equations. We remark further
on this choice for § in Section 2.4 and show that in the limit ¢ — O the WMFI equations possess an exact solution
in the form of a plane internal wave. We then show that this solution is also an exact solution of the nonlinear Euler
equations in this limit.

The decomposition of the fluid trajectory (2.3) implies the following decomposition of the fluid velocity:

. d
X(LAUBY. 1) = %(el? . et) -}—a-d—t.ﬁ. (2.8)

where for any function f of r and x(I*, 1),

dfe.n) _afed? o) af
e dat Y

af |
R
r Ox

Xl er). 2.9

!

Since the transformation between L* and [ does not involve the time, the derivative with respect to ¢ at constant
I4 is the same as the one taken at constant L*. For later use we define the Lagrangian mean velocity uy (ex, €t) to
be the phase average of the total velocity following a fluid particle with Lagrangian label /4, evaluated at its current
Eulerian position and time. Thus,

X(el™ex.er). 1) = X(LAUB(x. 1)). 1) = L (ex. €1). (2.10)

where overbar denotes phase average.
We decompose the pressure into its slowly and rapidly varying components as follows:

pX.1)=plx+adn)=pox+af )+ ) ol pjx+ag.0). (2.11)
Jj=1

where pg denotes the slowly varying part of the total pressure function, evaluated at the current position of the fluid
parcel with label /4. Thus.

po(x.1) = poU* (x. 1). €1) (2.12)

for a function pg and

pj{x.1) = bj(ex. €t) exp [UMJ + b]*-‘(ex. €1) exp [—ijm} for j > 1. (2.13)
€ €
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The pressure coefticients p;(x. ) contain the rapidly fluctuating time dependence of the pressure. The pressure
component pg is the Eulerian mean of the total pressure, pg(x,¢) = p(x, t), in which the phase average is taken
at fixed Eulerian position x. At Eulerian position x, pg depends explicitly only slowly on time, but it may depend
rapidly upon the Lagrangian labels /4 (x. ), A = 1. 2, 3. (In the Lagrangian description the fluid displacements X
and x are expressed as functions of L# and /4, respectively, and of time.)

The pressure p can also be decomposed into the sum of its Lagrangian mean py (x, 1) = p(x + «&, #) (in which the
phase average is taken following a fluid trajectory) and its remaining Lagrangian rapid fluctuations. when imposing
conditions on p that are required for the existence of internal waves, it turns out to be simpler and more natural to
deal with the Eulerian decomposition (2.11)—(2.13) than with the decomposition into the sum of Lagrangian mean
pressure and rapid fluctuations. We will return to this decomposition of p when we discuss prescribed fluctuations
in Section 6.3.

2.2. Motion equations in the WMF decomposition

Without loss of generality, we assume that det(3L4/3/%) = 1. Moreover, for simplicity in the calculation we
set R(X) = £2 x X with 2 = 27 and £2 = const, so V x R = 242. Allowing the spatial variation of {2 is
straightforward, but gives rise to complications in notation that we wish to avoid. In Section 4.3 we will consider
the leading order effect of such spatial variations. With the decomposition (2.3) the action £ of (2.1) becomes

L:fdr/d*/[l
2
1A d A A

+(x(el ,6t)+aE§)‘R(x(l 1)+ afx(d .t).t))

3k ,. axi\ " gl
+p (del <51—A)det [5j+a(81—3) 81—3:| — l):| 2.14)

where p(lA) = pi (LB(IA)). The independent variations of £ are now taken in x and p at constant {4 and 1.
Variation of £ with respect to p yields the constraint

axk ,. axiN " ol

and variation with respect to x yields the following motion equation:

d dg, 0 d d 0
3 (x,,,+a 51) —a—E—-———<X+a—£> ~pg8m3—apg£

5

PA

d
¢ (el et —
x( e)+adt£

- p(lA)g<z(/A. N+ a&d @, 1))

dr axm dr dr ax
' ar . Brm . 9 dR IR d¢
20 e T g . _—
+ (& x Im +aaxm - ox! * at aaxm dr (Xaxm dr
ax"\ ! ap
e w _, 2.16
(alA ) a1 o

The quantity r is defined by r = §2 x £. The order O(«) terms in Eq. (2.16) are the linearized equations in the
Lagrangian description for the stability of the mean flow %, when ¥(/4, 1) is prescribed.

With the decompositions of the fluid trajectory and pressure in the forms (2.3) and (2.11), Eq. (2.15) and (2.16)
contain terms that vary slowly in ¢, as well as those that are proportional to powers of the rapidly oscillating phase
factor e1?/€. To ensure that Euler’s equations preserve the decompositions (2.3) and (2.11) through a certain order
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in o and €. we must separately set to zero terms proportional to elnd/¢ where n successively takes on the values
0, £1. 42, ... Note that simply averaging Eq. (2.16) over the phase ¢ at constant /* is inappropriate, as we shall
discuss at the end of this section.

In order to use scaled variables /4 and €7 in the Lagrangian description, or ex and et in the Eulerian description,
we first divide Eq. (2.16) through by €. (If Eq. (2.15) were written as a continuity equation, it too would need to be
divided by € for the leading order dynamical evolution in (2.16) to describe incompressible flow). Then, without
specifying the relative magnitudes of « and €, we consistently neglect terms of orders O(a?e) and O(ar*) for the
remainder of this section. This level of accuracy is sufficient to determine the leading effect of the waves on the
mean flow, which occurs in our scaling at order O(a?).

2.3. Projections of the motion onto its harmonic components

The following notation is used: The left-hand side of (2.15) is denoted by A, the lefi-hand side of (2.16) by
€ B, and the projection operator onto the basis vector e!”%/¢ by P,/a". Thus, the operator P, projects out terms
proportional to e"%/¢ and multiplies them by o”. The projection Py, in particular, picks out terms independent of
the rapid oscillations in (2.15) and (2.16).

The equations resulting from P,A = 0 and P, B = 0 are written in the Eulerian description as follows. Setting
PpA = 0 (cf. Eq. (2.15)) gives volume preservation to order O(ae?),

D =1+0(%?). (2.17)
where D = det(d!”/dx') = det(d(el?)/dex'). Setting PyB = 0 (cf. Eq. (2.16)) gives the WMFI motion equation

dm/D) _ d m | d | S
THL X\ X ) T erset o §|uLf'+P()

det dex D dex
0 N 5 o, 1@ o .
aza [—wB +w’lal” + Eﬁ(a'a” +a”a’)] = O(a’e). (2.18)

where @ is the wave frequency Doppler-shifted by the Lagrangian mean motion,
w=w-—k- ur. 2.19)

m is the “Eulerian momentum density”,

N
%:m ok + (2 x3) + 0@, (2.20)
N is the wave action density.,
N 5. .
B:2\a\“w+21!)~(a><a*)+0(e). (2.21)

and u|_ is the Lagrangian mean velocity,
g (ex. et) = 2(el*(ex.€r). e1), (2.22)

cf. Eq. (2.10). The slow dependence on x and r of &y _is inherited from the slow dependence on /* and 1 of ¥(el?, et).
cf. the remarks after Eq. (2.4).
At leading order, O(1/¢), the motion equation (2.18) establishes hydrostatic and geostrophic balances, namely
apo

202 xuy + pgZ + — = 0. (2.23)
ax
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In order to provide the restoring force for internal waves, the relative density (or, buoyancy) o (/ A(x, 1)) must have
one derivative of order O(1) with respect to z. As we show in Section 4.5, this implies that the initial condition for
p in terms of Lagrangian labels is expressed as

o =Dp )+ p’el™). (2.24)

where p’ and p” are auxiliary functions. For conditions of hydrostatic balance, Eq. (2.23) assigns to the pressure pg
two derivatives of order O(1) with respect to z. Depending on the initial conditions for %, the geostrophic balance in
Eq. (2.23) may in addition require pg to have up to one derivative of order O(1) with respect to x and y. Since &,
by assumption depends only on slow spatial coordinates, however, the mixed second partial derivatives of pp must
be of order O(¢). Specifically, the function pg of Eq. (2.12) is of the form

pol™. ety = (3 phtel’ ety +1B(p) glel® et) + py (el et), (2.25)

where, as usual, we sum on the repeated index B = 1, 2, 3. The functions p" and py, in Eqs. (2.24) and (2.25) cannot
depend on /9, a = 1.2, as we discuss in Section 4.5 Furthermore, in order for the hydrostatic and geostrophic
balances in Eq. (2.23) to remain the leading order terms in the motion equation (2.18) for times up to order O(1/e),
it is necessary that the Lagrangian mean vertical velocity be of order O(e), i.e.,

up -2 =ewy(ex, er), (2.26)

as we show in full detail in Section 4.2, There are no constraints on the horizontal velocity components; so @y, - £
and i1y - J can be of order O(1). We shall see in Section 4.5 that Eqs. (2.24)—(2.26) guarantee that the derivatives p
and pg will have the required properties for times up to order O(1/¢).

Setting PjA = 0 (cf. Eq. (2.15)) shows that volume preservation yields wave transversality, to order O(¢),

k-a = 0(e), (2.27)

whereas the projection P|B = 0 (cf. Eq. (2.16)) gives at order O(az/e) a linear equation for the vector wave
amplitude, a,
-2 - . 3\ dpo
w-a+2iw(f2 xa) —ibk—{a- — }— = O(e). (2.28)
ox ) ox
As explained in the previous paragraph, the pressure p defined in Eq. (2.11) has two derivatives of order O(1) onty
with respect to z. Therefore, for the last term in Eq. (2.28) we have

d ap() gazp()A
- 2 =g O(e).
(a 8x> ax ¢ 072 ¢ ©

Nevertheless, for direct comparison with the higher-order calculation in Section 6, we prefer to leave this term
in the form given in Eq. (2.28). Taking —ia* - P; B + ia - P_; B = 0 gives the wave action conservation equation

N L 9 @LN +iD@b - ab*)) = Ote). (2.29)
det  Oex

where N is given in (2.21). Note to obtain wave action conservation, it is essential to retain terms of order O(a?)

in P; B. Apart from a scalar relation that determines b>, which is discussed in Section 2.4, the projections P,A =0

and P> B = 0 only contain terms of order O(a*¢) and. thus, represent wave—wave interactions, which one neglects

in WMFI dynamics.
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2.4. Remarks about the leading order WMFI equations

2.4.1. Lagrangian mean pressure

Decomposing the pressure p into its Lagrangian mean pj , plus rapidly oscillating pressure fluctuations still
results in Eq. (2.28). provided p| and the amplitudes of the pressure fluctuations all possess spatial derivatives of
order O(1).

2.4.2. Method of averaging

The WMEFI motion equation (2.18) cannot be viewed as a result of the application of the lowest order of the
method of averaging to the motion equation (2.16) with a prescribed rapidly oscillating function &, for two reasons.
(For an overview of the method of averaging see, e.g., [34,44].) First, the motion equation (2.16) has not been
explicitly solved for dx/dr; so it is not in the standard form for averaging. Averaging an equation in nonstandard
form leads to equations whose solutions generally do not remain near the solutions of the unaveraged equation
for times of order O(1/¢), [34,44]. The difference between the Euler motion equation (2.16) and its standard form
involves terms of order O(«) which do not contain dx/ dr. Second, even if Eq. (2.16) were put into the standard
form for the method of averaging. the terms of order O(aze) (since we divided by ¢, in (2.18) these appear as
order O(a?)) which are retained in Eq. (2.18) and which are essential for describing the interaction between the
waves and the mean flow, are smaller than the terms which would be obtained from the second order averaging of
Eq. (2.16). Here the leading order is . Therefore, the WMFI motion equation (2.18) is valid, only if the rapidly
oscillating terms in Eq. (2.16) are forced to vanish separately, to order O(a?€>, ar*e). In other words, Eq. (2.18) is
valid, provided Egs. (2.27)—-(2.29) also hold.

In contrast to the method of averaging, the method presented here is simply a decomposition of Egs. (2.15)
and (2.16) under the assumed form of the solutions (2.3)—(2.7) and (2.1 1)—(2.13). Its usefulness rests on the explicit
appearance of small parameters o and € and the consequent possibility of truncating various expansions of the
equations and using perturbative methods to solve them. In order for the truncations to be valid, it is essential that
the initial conditions are decomposed according to (2.3)-(2.7) and (2.11)—(2.13), and that these decompositions are
preserved throughout the time evolution. Provided conditions (2.24)—(2.26) are satisfied initially, such self-consistent
time evolution does indeed take place. as we shall discuss.

2.4.3. Plane internal-wave solutions
In the limite — 0, the WMFI equations possess an exact nonlinear solution in which £ is a monochromatic plane

wave of constant amplitude. frequency, and wave vector, and the latter two quantities satisfy the dispersion relation
for internal waves. In this limit. Egs. (2.17), (2.18), (2.27)—(2.29) imply

D-1=0. 20xﬁ1,+pg£+@ =0. k-a=0.

L | o - (2.30)

w-a+ 2iw(§2 x a) — ibjk — (a - —) — =0

ox / dx

where the right-hand sides vanish exactly since the neglected terms in the WMFI equations are all proportional
to €, and ¢ — 0. For uy we seek a solution of the form % = (¢, ¢2, 0), where ¢| and ¢, are constants, and we
have taken account of Eq. (2.26). Thus ¥ = (c1. 3. 0). x5; = 841" + ¢i1.i = 1,2 and x3 = /3. cf. Eq. (2.4). From
Eqs. (2.12). (2.24) and (2.25) it follows that

t2

p =3+ 0y p()::,z('s—{—l(,'(x, —cit)+ Kizz. =1, (2.31)
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where ¢3. ¢4. ¢5 and the vector K are all constant and of order O(1). Egs. (2.30) then have a solution in which
up, = (c1,¢2.0),a.b. k. w, and @ are all of order O(1) and independent of both x and ¢, while p and pg are given
by Egs. (2.31), and @ and k are related by the dispersion relation for internal waves, cf. Eq. (3.24),
2 2
o= (2!;/‘) n k32335)'
In the limit under discussion, all terms in (2.32) are independent of x and ¢. Thus the displacement is of the form
in (2.5), § = aexplitk - x — wr)] +a* exp[—ilk - x — wt)].

As established previously, the WMFI equations are the projections of the full Euler equations onto the zeroth
and first harmonics of e’#/¢. Independently of €, at order O(a4), a scalar relation, by = o’a - a, arises from the
projection onto the second harmonic, e%¢/¢. All other harmonics hi gher than the first vanish indentically in the limit
€ — 0. Therefore, as claimed earlier, the plane wave solution for £ with constant amplitude, frequency, and wave
vector satisfies the full nonlinear Euler equations.

In Section 3 we show that the WMFI equations (2.17)—(2.29) can be derived from the averaged HP 8L = 0,
where £ is the phase average of the action £ in Eq. (2.14). We then examine the implications of this derivation.
As we shall see, HP for equations (2.17)-(2.29) systematicaily implies energy conservation, Kelvin’s circulation
theorem, and convection of potential vorticity for the mean flow described by the WMFI equations.

(2.32)

3. Derivation of the leading order WMFI equations by HP asymptotics
3.1. Averaging in HP for ideal fluids

We return to HP (2.1) and pass to the Eulerian description, in which the action for Euler’s equations is expressed

as
ILAX. 1
[,:/ dt/ GBX{det(#) [5|U(X.t)12—,01(_LA(X‘t))gZ

A aLA
+UX. 1) -R(X(L". 1)) | — p | det axi )~ 1 3.1
with the Eulerian fluid velocity defined by
UX.t)=X(LAX. ... (3.2)

The independent variations are now to be taken in L# and p at constant X and ¢. This transformation to the Eulerian
description requires L to be an invertible function of X with derivatives 3.4 /3 X! which are continuous in both
space and time. Invertibility is guaranteed by the constraint of volume preservation imposed by the Lagrange
multiplier p. Continuity of the derivatives is an additional assumption.

We again choose the decomposition of the fluid trajectory given in Egs. (2.3)-(2.7). In the Eulerian description
this decomposition implies the following decomposition of the fluid velocity:

d
UX.1) = U(x+a§.t):E[‘(ex,et)—l—aa.{. (3.3)
where the Lagrangian mean velocity#, = U(x + «&, 1) is given by Eq. (2.10). In addition, in the Eulerian description
d/dr is given by
d 0 e 0 (3.4)
— = —4u. - —. .
dr ot b ax
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Note that Eq. (2.9) implies

d[A

=0 (3.5)

Consequently. the components of the Lagrangian mean fluid velocity EL, i = 1,2.3, are expressible in terms of
the partial derivatives of /4 (x. 1) as
. i A
U, =—-(D7'") —. i=1.23 36
" ( )A ot I (3.6)
with DA = 914 /9x" = (el*)/dex’ and the determinant D = det D# (volume element) satisfies
aD d _
ot DuL=0 (3.7)
det  dex
exactly. The decomposition of the pressure p(X, r) is given by Egs. (2.11)~(2.13).
Eq. (3.5) can also be established from the relation

d | U a)f(Xt)— 0
az‘x ) ¢ o\

which holds for any f [7]. Using (3.8) on dL*/dr = 0 and denoting

a
+uy - ,—)f(x+a§.r) (3.8)
ox

X

L? ([B(x.t)) =LY+ ak. 1) (3.9)

leads again to (3.5). (We have abused the notation in (3.9) by labeling the functions on both sides of the equation
by L4. without introducing additional notation.)

As before, we set det(dL*/3!8) = 1 and R(X) = §2 x X. where 2 = 2% and £ = const. After Taylor-
expanding the pressure component po(x + «£. ¢) in the decomposition (2.11) in powers of « we average over the
wave phase in the action (3.1) for Euler’s equations while keeping /4 and er fixed. Note that the averaging in this
setting is a formal operation associated with the addition of a new degree of freedom to describe the wave [47].
Thus. averaging in itself does not entail any approximations. The approximations occur in the truncations of the
expansions of the averaged action in the small parameters ¢ and «. The averaged action Lis

Z:/ dtf d3.\-l1)[%|ul,3 + o’ lal’ e —p([A(x.I))g:—é-ﬁL (02 x x)
5. .5 d
—2ia~wi? - (a x a*)] + poll — D) +1aepok - d(— X (a xa’)
€x

s ap da*! s p da’
+a (h+(1n1 [(])(6 a —ik-a*)f()(" (b*_f_a*mﬂ) (6 da ,, +1ka)

ax™ dex/ axm
[ 1 8% po

+o”

—— (d'a¥ +ala") +ilbk-a* — b7k -a)}(l — D) + O, a4)}. (3.10)
20x'dx/
Here b(ex. er) is by (ex. er). with its index suppressed. Terms of O(a*) arise from the incompressibility constraint
and are proportional to (k - @)”'(k - a*)”2, where the exponents p; and p» satisfy p; + p» > 2. When wave
transversality is taken into account, cf. Eq. (3.19), then these terms give corrections of O(a*e) in the equations of
motion. If. however, variations of £ higher than the first are computed, the neglected terms can be of order O(a?).
As discussed earlier, for internal waves to exist, the Eulerian mean pressure pg must possess two derivatives of
order O(1) with respect to £ and up to one derivative of order O(1) with respect to x and y. Likewise, the density
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o A(x, 1)) must have one derivative of order O(1) with respect to z. Thus, to find equations correct through order
O(a?), one should keep terms of order O(a?) in the averaged action and also terms of order O(a%€) when they
include po times a slow spatial derivative which could be shifted to pg by integration by parts in the course of taking
variations. (So the neglected terms containing pg are of order O(a?€?).) The independent variations of L are taken
inel*, a. ¢, po, and b at constant x and 7.

Integration by parts simplifies £ in expression (3.10) to

— l b I . —
E:/dz/ d3x{D[§lﬁL2+a‘|a|‘a)2—p(l(x.t))g:+uL~(Qxx)

ia’oR - (a x a*)] —a?iD(bk -a* — b*k - a)

> a0
o~ 0° . P
+(1 — D)|:p() + — Po (a'a*f +a/a*')i|

2 axiox/
3 apo da*/ 3[)[) aaf 2 4
- m *m P
+o e(a T denT +a 7 Gexd +O<a €, ) . (3.11)

provided the quantity A - ppk x (a x a*) vanishes on the boundary, as enforced by the Lagrange multipliers
and b* in the interior of the flow. The term in £ involving b and b* combines with last term in braces to give the
phase-averaged work done by the fluid displacement due to the wave against the pressure force.

Another round of integration by parts, neglecting terms whose variations contribute only at higher orders and
introducing additional notation, further simplifies the expression for £ and clarifies the coupling between its mean-
flow and wave terms. Namely, £ splits into the sum of the average mean-flow action Lmr and the average wave
action o’ L. given by

L= Lwr +azzw
=/ dr/ &x [ D3l — pUe gz + a1 (2 x 0] + pot1 = D)
+a? F* Dy, FY 4 O(ae, a4)| , (3.12)

where, strictly for notational convenience, we combine a and b into a “four-vector field” F* = (a, b), with
p = 1,2.3.4, and define a Hermitian dispersion tensor D, = Dy, given by

3% po

=28 DS _
Dij = Dw"8;j — 2iDwe;j; 2 Dax'laxj.

Dy; = iDk; = —Dja, Das = 0. (3.13)

It is clear from the decomposition of the WMFT action (3.12) that stationarity of Ly with respect to variations of
the fields F** = (a*, b*) yields D, F¥ = 0, whose solutions are the polarization eigendirections of the field F¥,
up to an overall complex constant, and whose solvability condition produces the dispersion relation for the waves.
Likewise, stationarity of £ under variations with respect to the fluid variables produces equations for the mean flow,
with order O(a?) wave forcing which arises from the dependence of D,,, on D and @ = w — &L - k.

3.2. Equations arising from the averaged HP

Stationarity of £ under variations with respect to pg at fixed x and r implies volume preservation, namely, cf.
Eq. (2.17)

] bl y, . . . 8 A
D=1+ 0(x"e", 0(46), which implies Sex ‘uL = O(azez, a’e). (3.14)
€x
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Likewise, stationarity under variations of Linel® at fixed x and 1 yields the motion equation (2.18):

om/D) _ (d m)+1 - d l|_ |7+
—uL X | — x — - — | zluLl”
L dex D Gpgz dex \ 2 L Po

det
2 0 N~7’]32P0ij [, 2
[ — —)— < - — - - * * E = “ 315
+o a€x|: wD+wla\ +28x'8x1(aa +a*al) O(a’e) (3.15)
with
L _ , N
m = o Du). —a kN + D(§2 x x) + O(a~¢) (3.16)
L
and
1 8L ..
N=——=2Dlal"® + 2iD2 - (a x a*) + O(e¢) 3.17)
o dw

as defined in Eqgs. (2.20) and (2.21). Thus N is proportional to the momentum density canonically conjugate to the
wave phase ¢. Likewise, the Eulerian momentum density m is related to the momentum 74 = 8.£/8/,, canonically
conjugate to [ by

mi=—-naD} = —ma— or m=—-n,VI* (3.18)
ax!
where we have used the relation (3.6) in taking variations to calculate 7 4.
Stationarity of £ under variations in b* and a* gives, respectively,

k-a=0() (3.19)

and
5 .- . 0\ 0
&*a - 2i(92 x a) — ibk — (a-_—)ﬂ = Ole). (3.20)
dx /) ox
which recovers Eqs. (2.27) and (2.28).
As might be expected for a phase-averaged Lagrangian, £ is invariant under a shift in the origin of the phase. Thus,

@ is an ignorable coordinate and stationarity of £ under variations in ¢ gives a conservation law for its canonically
conjugate momentum:

aN N d
det dex

(ULN +iD@*b —ab™)) = O(e). (3.21)

The phase-averaged Lagrangian £ is also invariant under the restricted phase shift
a— eMa, b — eMp, V0 = const (3.22)

with all other variables left unchanged. However, this invariance is trivial at this order - its conserved density is a
pure gauge.
In taking these variations we have set
~9po

(h - Sa™) (a E) =0 and &¢A- . N +iD@*b —ab*)) =0, (3.23)
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on the boundary, when integrating by parts. So the displacement of a fluid element and the flux of wave action
density (which is N times the group velocity of the wave) are taken to be tangential to the boundary.

Remarks.

(1) Other boundary conditions could be imposed by using. say, the standard technique of adding a null Lagrangian
to L. (A null Lagrangian is the space and time integral of a total divergence, whose only contribution in HP
appears at the boundary. See, e.g., [19] for more discussion.) However, this approach is not pursued here.

(2) Eq. (3.21) can be viewed either as the result of varying £ with respect to ¢, or as the conservation law arising
via Noether’s theorem from the invariance of £ under translations in ¢.

(3) As stated after Eq. (2.28), the last term in Eq. (3.20) can also be written as a382p0/6222 + O(e). However, the
form in (3.20) is preferred for later comparison with higher-order calculations, cf. Eq. (6.12).

(4) Wave transversality (3.19) holds to order O(e), so Eq. (3.20) may be viewed as an eigenvalue equation for
the two components of @ perpendicular to k, while the third component of the equation determines &. The
solvability condition for the eigenvalue problem is the dispersion relation, which may be found, e.g., by taking
k x (k x (3.20)) and @ - (3.20). Namely,

~2 (2!2‘1()2 i kjk[ 32po
- - 7 8"[ o i
@ 2 ( K2 )axfax/

O(e). (3.24)

Thus the Doppler-shifted frequency @ is independent of the magnitude of the wave vector k and depends on
the mean flow through py. If the quantity 32 po/(dx/dx’) initially depends only on ex, et then it will remain
s0, as we will see in Section 4.5, provided the buoyancy p satisfies the initial condition (2.24), which supports
internal waves.

(5) Under conditions of hydrostatic balance and when u; = 0, Eq. (3.24) reduces to the well-known dispersion
relation for linear internal waves. Note that the initial conditions (2.24) and (2.25) on the buoyancy p and the
Eulerian mean pressure pg. and the requirement (2.26) on the vertical component of &, imply that @? is order
O(1), so we are not discussing critical layers (for which @ = 0).

4. Properties of the leading order WMFI equations
4.1. Quasi- and semi-geostrophic balances

Upon manipulating the equations developed in the previous section, the motion equation (3.15) can be written in
terms of uy as

3 7 ] o 1/_ v . 317())
— C— — —{u. x — - —
det L dex L € L pgx ax

>[N o 3 5
=o' |=——+ik|— (@b - ab" O(a~e). 4.1

* [D86x+ <8€x (@ 4 ))]+ (7€) @.1)
The leading order WMFI equations (3.14), (3.19)—(3.21) and (4.1) (which are collected in Section 4.7) describe
dynamics on an invariant “slow manifold”, which is nearly hydrostatically and geostrophically balanced. This is
the sense in which the wave-mean flow equations comprise a reduction of the original Euler equations: Addi-
tional variables and equations are required, but these equations have solutions which vary slowly in space and
time.
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The motion equation (4.1) has terms of three different orders: 1/¢. 1. and o®. At leading order (4.1) reduces to

3
202 x i + pgd + % —0. (4.2)
X

which enforces the hydrostatic and geostrophic balances, as discussed before. Inclusion of terms of order O(1) in
(4.1) yields the equations for the mean motion, | , varying slowly in time and with no wave effects. This is also the
order at which the nonlinearity occurs. Terms of order O(?) in (4.1) incorporate the “rectified” effects of rapidly
fluctuating waves on the slowly varying motion. Thus the mean flow is hydrostatic and geostrophic to order O(1)
and the adiabatic parameter ¢ formally plays the role of the Rossby number for the mean flow. The familiar quasi-
geostrophic and semi-geostrophic relations may now be derived [40], with Rossby number replaced by the adiabatic
parameter € and with appropriate revisions to account for the effects of wave activity, which enter at order O(ar?).

4.2. Initial conditions and balance relations

The leading order hydrostatic and geostrophic balances of these equations hold, provided conditions (2.24)—(2.26)
are satistied, where the Lagrangian labels /# (the initial coordinates) satisfy the advection law (3.5). Conditions
(2.24)—(2.26) restrict the allowed initial conditions for the wave-current flow. Under these restrictions, the evolution
remains for times of order O(1/¢) hydrostatically and geostrophically balanced to order O(1) and the rectified
effects of the wave motion remain weak at order O(ar”).

We now demonstrate relation (2.26). Assuming that uy_ - Z is of the form

up -2 = wolex.er) + euw(ex, €r), 4.3)
we show, in three steps. that wy must vanish. The first step establishes the independence of wy of transverse spatial
coordinates. the second its independence of €z, and the third one invokes the boundary conditions to show that wo
must be absent.

For the geostrophic balance in Eq. (4.1) to hold at order O(1/¢) for times up to order O(l/¢), and for uy, to
depend only on slow spatial variables as assumed, py must have exactly one derivative of order O(1) with respect
to x and y. Taking this into account. as well as the form of py given by Eqgs. (2.12) and (2.25), it follows that for
times up to order O(1/¢) the following relation holds :

o’

— <O0(e), i=1.2. (4.4)

ox'
Theretore, the (3,1) and (3.2) elements of the Jacobian matrix D;* must be of order smaller than or equal to €.
Inversion of the matrix D,A then shows that for times up to order O(1/¢)

0z
a7 <Xe), a=1.2. 4.5)
Use of Eq. (2.4) together with the Mean Value Theorem now implies that to order O(1) the ; component of the
mean velocity in the Lagrangian description, ¥*(e/?, e7), must be independent of €/¢. a = 1, 2. Together with
relations (2.10) and (4.4), this implies that wy must be independent of € x and ev. That is, wy can only be a function
of ez and er.

To carry out the second step, we multiply both sides of Eq. (4.1) by € and neglect terms of order O(a?€), with
the result
apo

0 0 ,
— 4w - — lu 22 xu 24+ — = Qae). 4.6
6(86[ +u. 8€x)u1< + x uy + pgl+ PP aT€) (4.6)
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We have neglected the terms that describe wave-current interactions, which enter at order O(e?) in Eq. (4.1). The
present argument only makes use of terms of the two lowest orders in Eq. (4.1), so the wave-current interactions
do not play a role. We act on Eq. (4.6) with the operator €(9/d€t + uy, - 3/9¢x), use the relation £2 = 27 and the
requirements that po have two derivatives of order O(1) with respect to z and one derivative of order O(1) with
respect to x and v, and perform one iteration in € to solve for the horizontal component of #; . The result is

— 1 (. Oopo € a 1 apy a d | 3po 2 9
=—(tx 2 ) - S| —+—=(tx2)- + = 40P €, @47
@ n 202 (z x ax) 4622 |:3€I 202 (Z " ox Jexy 0 3ez dxy (%, €9 4.7)

where the subscript H denotes the horiontal component: (@1 )y is defined by (# )y = wrL — Z(ur - Z), and xg by
xH = x — Z(x - 2). Taking the slow divergence of Eq. (4.7) then leads to the relation

a e [0 1 ? 3 92
@ = —— 4_+_(2xﬂ LA L
dexy 402< | der 282 ox dexy 3€quaxHi

] 32 5
——E—; |:w0 :l _gh + O(a’e, €7). (4.8)
482+ d€z | dexpdxn;

which by incompressibility, Eq. (3.14), implies
dwy/0ez = O(e). 4.9)

Therefore, in &y, - £ all the dependence on €7 is in w), so that wg can only be a function of ez.

The third step in showing that wq vanishes is straightforward. For a smooth boundary there exists a point where
uy. -Z, and hence wy, vanishes for all times, because of boundary conditions. Since wy at this point has been shown
to be independent of spatial coordinates, it must therefore vanish throughout the enclosed domain for all times,
which completes the demonstration that wy is indeed absent, so that &y, - Z = O(e).

4.3. Lagrangian and Eulerian mean vorticity dynamics in WMFI

The curl of the motion equation in (4.1) yields the Lagrangian mean vorticity equation

Jw d ) 9z
e&—(— x (UL, X (65L+2Q))+§—£ X —
det dex €dx oOx
(N/D dw 0 a
= —a’e # x 22 2L @b —ab) ) x k| + O3, (4.10)
dex oex dex \ dex
where the Lagrangian mean vorticity @y is given by
_ d .
W, = — XuL. 4.1
dex

Thus, wave activity may create Lagrangian mean fluid circulation (or Lagrangian mean vorticity) at a rate of order
O(a?) in slow time, when the gradients of the wave action density N and the Doppler-shifted wave frequency @ are
not aligned. Likewise for k and the gradient of divergence of i(a*b — ab*) with respect to slow space. The quantity
iD(a@*b — ab*) is the flux of wave action which is not convected by the fluid, cf. the wave action conservation
equation (3.21). So iD(a*b — ab*)/N is interpretable as v, — L, the group velocity of the waves relative to the
Lagrangian mean velocity.

In order to examine further the physical significance of leading order terms in the motion equation (4.1), it is
useful to introduce the Eulerian mean velocity ug. This quantity is defined to be the average of the exact velocity
U of Eq. (2.2) at a fixed Eulerian position x,
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g = Ux.1). (4.12)

The difference between #y and @g is the Stokes mean drift velocity &s [7], which may be calculated in WMFI
scaling as

Gs=u, —fg=Ux+ab.1)—Ux.1)

{8 d A&l om . 9m
=a? (s'——£> g 8O Cee T 0w

axt dt xi JuJ Ixiox/
5 0 d v s 5 0 .d v 9
=a | & —5 + O(a”e”. o) = a’e- ‘ .(E'—£)+O(a'e“a4), (4.13)
ax' dr dex’ dr

where in the last step we have invoked 3&'/3x’ = 0. which appears at order O(«) (the trace) in Eq. (2.15). Upon
using the explicit form for £ given by Eq. (2.5). the expression for #g becomes

_ > . d
Us = "€l

el [(D (’a’.a* - (z*ia)] ~Ola’e”. o). (4.14)
dex ~

Thus, &g appears as an order O(a”€) quantity in both Lagrangian and Eulerian mean vorticity dynamics in WMFIL.

Remark on the beta effect. Suppose small spatial variations of the rotation vector £2 are considered for a moment,
by setting

2 =027+ B2 (x). (4.15)

where §2 = const and 8 <« 1. With the definition of the Eulerian mean vorticity wg
_ d —
E= — X Ug. (4.16)
dex
we take the curl of Eq. (4.1) and express @y as ¥ = ug + us to get the equation for Wg.

AWE e 0 B - 1 3 (E 02 . Opo
R - - —WE — WE - - —— X x 282 — - —
det E dex E E ex E € Jex E P& ox

d
+ EEE —280 - é
€ dex €

) 1
202 g = O@?).
dex

Thus, the vortex stretching due to the beta effect enters first, at a lower order than wave effects in this scaling, if
@’ = o(B/¢). Since our main concern here is WMFI dynamics, we ignore the beta effect in what follows, although
there apparently are flow regimes in which the beta effect either competes with WMFI dynamics. or dominates it,
depending on the relative magnitudes of 8/¢ and «”.

4.4. Noether symmetries, momentum balance and potential vorticity conservation

Noether’s theorem associates conservation laws to continuous symmetries of HP. See, e.g., [39] for a clear
discussion. Invariance of £ in Eq. (3.11) under time translations leads to the energy conservation relation

aw d B
—— 4+ — -8 = O(a~e). (4.17)
der  dex

where W is the total energy density. given by

W/D = laL|” + o’lal’®” + pgz + Ola’e) (4.18)
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and § is the energy flux

_ ) . a a da*
S/ =& (W + DPg) — a*iDwla’b* — a*/b) + a’e 20 | ¢! L (4.19)
ax et det
The quantity pg;_ is the Lagrangian mean of the pressure component pg.
— T 8% po *j *i j 4.2
PoL = polx+ab.t)=po+a 2() Tox j(a a”’ +aval)+O(a"e). (4.20)

With an error of O(a”€). Py, is also the Lagrangian mean of the total pressure given in Eq. (2.11)
If £ in (3.11) did not contain the terms &y - (£2 x x) and pgz it would be invariant under spatial translations,
which would lead to momentum conservation. Instead, we have the momentum balance relation

9G; oT/

D )
- + pg(Sg + ~(.Q x up)i = Ola~e). 4.21)
o€t Jdext

Here G, is the total momentum density,
Gi =mi + &’ Nk, = DI@L); + (82 x x);]. ' (4.22)

consisting of the sum of the Eulerian momentum density in (3.16) and the wave momentum density a?Nk, and T,.J
is the momentum stress tensor, given by
T/ = Giu] + DPy.8! — «*iDki(a’b* —a*/b) — aze,di? [a*’f&'—]. +a 2 ] + O(a?e). (4.23)
ax dex! dex!

Since uy_ has zero divergence at this order, the divergence of Eq. (4.21) gives an equation for the pressure which
has no partial time derivatives. The operator acting on Py is a small deformation of an elliptic operator, as we
exhibit explicitly in the next section, and is thus invertible. In this sense, the theory is “balanced”. Also, if the matrix
of pressure derivatives dpg/(dx/dx’) initially depends only on ex, €, then it will remain so, provided the initial
buoyancy satisfies (2.24) and the vertical component of @ satisfies (2.26) throughout the time evolution. The terms
proportional to a® in Eq. (4.23) for the total stress tensor are the radiation stress terms, see, e.g., [15]

The action £ is also invariant under a shift of Lagrangian labels along level surfaces of p effected by the vector field
e BC L (dp/a1B)(3/81"). where ¢ is a constant, but otherwise arbitrary vector. The associated local conservation
relation is

0 ABc 9P k d age 90 i ik 1 5L 2
%l} B(D )Amk +W € 575 u (D "Yymy — D(D™ )A<3D = O(a“¢). 4.24)

Further manipulations of (4.24) yield the conservation law
g, 9 p Ola’e). (4.25)
—_— u, = %¢ .

det dex L=

where ¢ is the potential vorticity given by

1dp (0 m
= —— |—x—=1. 4.26

9 D ox (8ex D) ¢ )
The continuity equation for D (3.7) then implies the convection relation for the potential vorticity g, namely

dg/ det = O(a?e). Eq. (4.25), or the closely related convection relation for ¢, can also be deduced from Kelvin’s
theorem, as we show in Section 4.6.
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4.5. Solving for pg

Differentiating the momentum balance equation (4.21) with respect to ex’ and summing to form the divergence
gives, after setting D = 1. the following fourth-order equation for py, the Eulerian mean pressure:

82 + 263 g xl 84 + d ( J *[) 83
4 ala v : (a’a —
d(exi)? dex')2oexs dex! dex! dexidexsdex!

( Bl ( ul da’ . ,aa*»’ ) 92
— - a — - a n -
dex/ dex dexi dexigex |70

18 2 _ oul o]
= —- -2 (— xu) — . .
eg dez € (Eiex x L) dex/ dex!
, 32 . , .
tati— k@bt — a*i by | + Oae). 4.27)
dex'dex/

For times up to order O(1/¢). Eq. (2.26) for the vertical Lagrangian mean velocity and Eq. (2.4) for the evolution
of the mean displacement imply — after using the Mean Value Theorem on Eq. (2.4) and inverting the (nonsingular)
Jacobian matrix (D! )’A —the following expressions for the Lagrangian fluid labels in terms of the Eulerian variables:

P=z+4ylex.et) or e’ =eztexitex.en) 1= (je)x“(ex.et). a=1.2 (4.28)

for certain functions x*. A = 1. 2. 3. of order O(1). Consequently. Eq. (2.24) for p and (2.25) for p( can be written
in Eulerian form as

p = (1/e)ez)r' [(ez.€r) + rolex.er) + €rj(ex.er) + -+ (4.29)
and
Po = (1/62)(6:)37/_2(6:. ety + (l/e)m_(ex. €ty + molex, €t) +emy(ex.et) + - -~ (4.30)
We expand the Lagrangian mean velocity 1. in powers of € as
g o=a) e +eta 4.31)

and solve Eq. (4.27) perturbatively for py by equating coefficients of like powers of €. There is no need to expand
any quantities in powers of o, Moreover, because of the error already assumed in the equation for momentum
balance. and hence in Eq. (4.27), there is no need to expand wave quantities in powers of € either.
Ateachorderine”.n = -2, -1.0.1...., the solution for pressure requires only the inversion of the Laplacian.
The lowest order is
3 ez’ ) dex)r’ )

= - . 4.32
de)? § dez (4.32)

which upon the imposition of the boundary condition

(e’ 4)

dez -0

=0

leads to the hydrostatic balance relation

dl(ex) . ,)

= —gezr’ . 4.33
Je- LEIr_ ( )
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Eq. (4.33) can also be obtained, of course, from the motion equation (4.1). If the function p’ of Eq. (2.24), and
consequently the function p;, of Eq. (2.25) had depended on €/“,a = 1, 2, then 7", would have also depended on
ex and ey. Upon enforcing the geostrophic balance at leading order we would have been led to the equations

!
arr’ ,

<

dex!

=0, i=12. (4.34)
This demonstrates that rr'Az, and hence r’_ ;» cf. Eq. (4.33) cannot depend on the transverse coordinates.
Atorder € 7', Eq. (4.27) for pq yields

327[_1 arg d )
— = — 202 | — x & . 4.35
Aext)? gae: * (E)ex L ) (4.33)

This equation for 7_|, together with the usual Neumann boundary conditions, is equivalent to the equations that
result from the motion equation (4.1) at order O(1/¢),

am_
= —0rg.
dez 870
Ay —(0)
=20 . 4.36
dexn UL (4.36)

The quantity xy is the transverse component of the vector x, as defined after Eq. (4.7).

Note that because the pressure equation (4.27) assumes an error of O(«2¢), the fourth-order differential operator
in square brackets multiplied by o€ in Eq. (4.27) and acting on py finally enters only at order €”, when it acts on
(ez)zzrlz. At this order, we have a Poisson equation for my,

82 , ot 9la3)?\ 87
O = —a?| a2 4+( ) .
d(ext) d(ez) dez ) d(ez)

3 (*;aa1+ 33a*f) 9? €2y’
Y L A a —— [(ez
dexi dez dez ) d(ez)? -2

ar|
de€z

a2

. n—=(0)i f—(0))
0 _m)\ _ dm " ouy L2 07 Pk
+ 242 - (5‘6; X uL - 8e,rj afxi + 1 Bexiaéxj [k ((1 b" —a b)]~ (437)

—&

whose boundary conditions are obtained by evaluating the momentum balance relation (4.21) on the boundary.
Namely,

" . —(1) _j 9 oy
Ao = —n3gr - 20 - (92 xu ') —njuy e L
T T s 3. 0 [0Re)m,
+ a“in; _[k'(a’b* —a™'b)] —a“la’|h — | —————= ). 4.38
'aexJ[ (a a’b)] —ola| dex d(ez)? ' 439

where 7 is the unit normal vector to the boundary, and both sides of the equation are evaluated at the boundary.

Remark. Since the derivative of p with respect to 13 (or z) is assumed to be negative, the dispersion relation (3.24)
implies that @ is positive definite. (The quantity /—gdp/dz is Brunt—Viisilld frequency for stable oscillations
under the restoring force of gravity.) In fact, as mentioned earlier, the Doppler-shifted wave frequency is assumed to
be of order O(1). In combination with the dispersion relation (3.24) this implies that the projection of the curvature
of an isobar onto a plane orthogonal to the wave vector is bounded, both above and below. This, of course, is
consistent with the assumed forms of p and pg, Egs. (2.24) and (2.25), and the form of w, Eq. (2.26). However,
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it also affords a remarkable simplification for solvability of the WMFTI system that the curvature of the pressure
contours is bounded for times of order O(1/¢).

4.6. Kelvin's theorem and potential vorticity

Kelvin's theorem for this theory is found by integrating the motion equation (3.15) around a closed contour ¥ (et)
which moves with the Lagrangian mean velocity uy_. (In fact. the motion equation is naturally in the form of Kelvin’s
theorem, when expressed in terms of variations of £ with respect to D and ). Suppressing the error estimates, we
calculate. as follows :

d 1 d Y
LI G L B -tk 4 - dx
de: ¥ D™ der ("L “pET ”)
Vien) yier)
o a\m  m;ou’
= —_— A - — - dx
% |:<86r L aex> DD ex
Yier)
_ 8 y§ pg.dx:l//vpxz-ds. (4.39)
€ €
Yien Sy

where S(¥) is a surface with boundary . Thus. a nonvertical gradient of buoyancy may create a combination of
fluid circulation and weak wave activity. We may rewrite this equation as

d g >N
= @+ 2xx) dr+ S 2ode = — 22k dx. 4.40
et f(uL X X) +6 % o i o« - (4.40)

yiet) Vier) yier)

Consequently. if the wave component of the circulation is steady, it creates no Lagrangian mean-flow circulation.
This is a version of the Charney—Drazin “nonacceleration” theorem discussed in the introduction, see, e.g., [6,7].
Applying the transport theorem (cf. | 12}]) to the right-hand side of Eq. (4.40) gives

d
— (ﬁ[_+ﬂxx)-dx+§'¢p2-dx

yiet) Yier)

) 5 N i N
—a? b | —k-u 2k} |- dx. 441
* %[867 o* "Lx(aexxuk)] dx 4D

YViern)

Therefore, we may say more precisely that (upon evaluating D = 1) a steady wave whose wave vector k is aligned
with its wave action density gradient d N /d(ex) creates no circulation of Lagrangian mean velocity.

Applying Stokes’ theorem to Eq. (4.39) reconfirms that the potential vorticity g defined by Eq. (4.26) is convected
with the Lagrangian mean velocity uy , i.e.,

3 3 d
4 g M 9 _9 (4.42)

u — = —
det dex der
Consequently. we have the conserved quantities (“Casimirs™),
Co = / d*x D®(q. p) = const. (4.43)

for any fuction ®.
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Remark. The leading order WMFI circulation theorem (4.41) extends to arbitrary fluid contours the circulation
theorem of Grimshaw [23] for horizontal fluid contours — in the incompressible limit with the Boussinesq approx-
imation, and when viscosity is absent. In the same limit, Eq. (4.42) extends the equation for potential vorticity
dynamics in [23] to a conservation law for potential vorticity on mean fluid parcels, thereby leading to the Casimirs
in Eq. (4.43).

4.7. Summary of WMFI equations to order O(a?)

Suppressing the asymptotic order estimates, we may summarize the self-consistent WMFI equations of this
section, as follows (with D = 1):

d _ a \ _ 1/ . 9
(—+uL-—>uL—;<uLx2ﬂ—pgz~,i;)>

€t dex a
@ a
= —a? [N—"’ + ik (— a*b —ab*))]
dex dex
with
dp aN d ok dw
— =0, —+— - (@LN+i@b—-—ab"))=0, —+ —=0. 4.44
dr Jdet + dex (uL @b —abh) =0 Jdet - dex ( )
The quantity N (wave action density) is defined by
N =2lal*® +2i82 - (a x a*). (4.45)

At a given time step, the diagnostic variables, po. b, a and @ = w — ur - k, are determined from the current value
of N and the constraints (again with D = 1),
d a1\ o0
=0, k-a=0. @a+2ia?xa) —ibk - {a-— )P0~ (4.46)
dex dx ) ox

up to an overall phase in both @ and b.

5. Hamiltonian structure

We now pass to the Hamiltonian formulation of the leading order WMFI equations (4.44). For this, the relation

alA S 9
TA— — " N—

— )
= . “N 5.1
at det meuta o .

is useful in Legendre-transforming £ in (3.11) to find the WMFI Hamiltonian, . Then we transform the Poisson
bracket in the mean-flow canonically conjugate variables 4 and 14 (x, ), A = 1, 2. 3, to the noncanonical Eulerian
fluid variables, D =det VI4, p(I4) and m given in Eq. (3.16), by using the chain rule for functional derivatives. We
also transform the Poisson bracket in the wave canonically conjugate variables —a?N and ¢ /¢ to the noncanonical
wave variables N and p, where p is the wave pseudomomentum density, p = Nk, again by using the chain rule
for functional derivatives. This yields the ideal WMFI equations in Lie-Poisson Hamiltonian form [1,31], in terms
of the Eulerian fluid and wave variables. The ideal wave mean-flow system (4.44) turns out to be a Lie-Poisson
Hamiltonian fluid system. Thus, its (relative) equilibrium solutions are critical points of a constrained energy and
the energy-Casimir method may be applied to determine Lyapunov stability conditions for these equilibria, as done
in, e.g., [32].
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Passing from the constrained Lagrangian (3.11) for the WMFI equations via the Legendre transformation —
facilitated by relation (5.1) — yields the following constrained WMFI Hamiltonian:

1 >
H :f d3x[[5|m +a’p — D(02 x x|> + Dpgz

«’D (N a?iD .
+W(5—ZIQ-(axa*)>]+ N (bp-a™ —b’p-a)

2 a2
N PR R
+(D —1) |:po + 3 axiox] (a'a* +a’a™)
(126( m ap() da*/ + *m ()po aaj + O .7_6 4) (5 2)
— a -+ g —— . ae.a) ;. .
o 0x™ Jdex/ ax™ Jex’

Actually, 7 is a Routhian [42] — the diagnostic variables a. 5. and pg (as opposed to the prognostic variables / A
and ¢) are not Legendre-transformed. since they have no canonically conjugate momenta at this order. Thus, they
remain as Lagrange multipliers which impose the same constraints as they did before, in Egs. (4.46). Perhaps not
unexpectedly, evaluating 7 on its constraint manifold by setting D = |, using (4.46) and the definitions (3.16) and
(3.17), recovers the conserved WMF energy in (4.18).

The canonical Poisson bracket in terms of (4. ") and (—a’N. ¢ /€). which follows from HP with Lagrangian
(3.10) is given by

{F.GY(ma I —a®N. ¢ /€)
_ / 3 |:8F 8G 8G SF SF 8G SF 3G ]

M 57a 51" smaslt  5(alN)Spje | 3p/c (2N

(5.3)

The WMFI equations (4.44) now follow in Hamilton’s canonical form upon using A and the canonically conjugate
pairs (4. {4yand (—a°N. ¢ /¢). However, since H is expressed in the Eulerian fluid variablesm. D, p, and the wave
variables p, N, we transform the canonical Poisson bracket (5.3) into the variables that appear in the Hamiltonian,
in order to simplify the subsequent manipulations. (These variables Poisson-commute amongst themselves under
the canonical Poisson bracket. so this transformation is a Poisson map.)

Specifically, the definitions D = det VI4 and m = —,VI* in (3.6) and (3.18) and p = Nk allow one to use
the chain rule to transform the canonical Poisson bracket into a sum, consisting of the Lie—Poisson bracket in terms
of variables m., D and p that is discussed, e.g., in [1,31], and another similar Lie—Poisson bracket in terms of p and
N. Namely,

oF 3G 8G  8G
F.GY=-¢ | x| — (@m; +m;8)— + DO — — —0;
{ } 6/ r[gm’ (((_,m +m; )6mA,- + Dd; 5 ,p)
+8F8.(D¢SG>+8F8G4‘
sD Sm; so 8m; iP
€ . [6F [ _8G 56) §F [ §G
—— | dx| —{Gpi i0i)— +Noi— ) +—0; {N—|. 54
a~/ ‘[spi ((”’ TS NN ) TN\ Ny, 6

where we have integrated by parts and the partial derivative 9, = d/0ex’/, j = 1,2.3, operates on all terms it
multiplies to its right. This Lie—Poisson bracket satisfies the Jacobi identity

(E{F.GH+{FAG. E}}+{GHE. F}} =0 (5.5

for any functionals E£. F and G of (m. D, p,p. N). simply because (5.5) is a variable transform of the Jacobi
identity for the canonical Poisson bracket (5.3). The first Lie—Poisson bracket in Eq. (5.4) is defined on the dual of
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the semidirect-product Lie algebra of vector fields and the direct sum of functions and densities. Dual coordinates
are: m, dual to vector fields; D, dual to functions; and p, dual to densities. See, e.g., [29,30]. The other Lie-Poisson
bracket in the sum is similar. Its dual coordinates are: p, dual to vector fields; N, dual to functions. Each Lie-Poisson
bracket in the sum satisfies the Jacobi identity separately. This Lie-Poisson structure is identical in form to that found
by Holm and Kupershmidt [28] for the two-fluid theory of superfluid He* in the absence of vortices. The difference
is in interpretation. In the two-fluid theory of superfluids, there are two interpenetrating fluids. The normal fluid
carries heat and mass, while the superfluid carries only mass. In the two-fluid interpretation of the WMFI theory,
the mean flow carries volume and mass, while the “wave fluid” carries only wave action. In both cases there is an
S1 order parameter, a phase. A similar analogy — between superfluid models and an ensemble of high frequency
sound waves in a compressible fluid — is discussed by Putterman and Roberts [41].

The variational derivatives of the constrained Hamiltonian (5.2) may be determined from the coefficients in the
following expression :

— 1
571:/ d%{ [—Elﬁle—EL-(!) xx)+pgz+ﬁ]5D+Dgzsp
_ N NV
+uL-8m—(l~D)5p()+a‘[w~ﬁ(bk-a*—b*k~a)j]8N
2| = 1D * * s 2 *
+a” uL+7V—(ba —b*a)|-8p +ia"D(Sbk -a* — 5b"k - a)
2| o s -2 - : "9\ 9po )
—a“|da* - | Doa + 2iw(§2 x a) —iDbk — D aAa— or +c.c.| +O(xe) ¢, (5.6)
x / Ox

where the quantity p is given by

2 42
o J . . R

7= po+ o= 2P Gia* 1 aiaty - aX(@%al? + 2ie0 - (a x @) + O(ae). (5.7)
2 dx'dx/

The corresponding equations of motion in Hamiltonian form, correct through order O(a?), are given by

om; 1 — SH 6H §H
=—{m;. H} = —(0;m; D) —— + —3ip — DO —
Ber e = S B0 e = DA,

; 1
= —(@;mi + m;0))uy + Dgzd;p — D3; (—;lfqﬁ — - (2 x X) + pgz +ﬁ) ,

%=£{D."ﬁ} = _a"DaiSmEj = 0, D] .

;% = gl{lhﬁ} = A%Bﬂ) =~} 3;p.

% = ;l{N.ﬂ} = —(%a, (Ng) = —3;(N@ +2DIm(b*a’)),
%:é{m‘ﬁ}=—;—3(ajl’/+pﬂi)§—§—% 'ig

. 2D . 2D
= —(3;pi + pjoi) (ﬁi + WIm(b*a-’)) — No; (d) - Wlm(b*k ~a)> (5.8)
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with constraints determined by the other stationarity conditions,

spo: D =1+ O(a’e’).

8b*: k-a=0). (5.9)

- . a\d
sa*: ra+2iw($2 xa) - ibk - (a- — Py _ Ofe).
dx /) ox
SoH is stationary for the diagnostic variables and generates the evolution of the prognostic variables. Straightforward
manipulations simplify the last equation in (5.8) to 3k/der = —dw/dex. which is the wave transport equation.
Note that evaluating the pressure p in Eq. (5.7) on the constraint manifold (5.9) gives p = po + O(aze). Then

suppressing order estimates in Eqs. (5.8) and (5.9) yields the WMFI equations (4.44) and (4.46) in Lie—Poisson
Hamiltonian form in terms of m. p. N and k.

5.1. Interpretation of the wave pseudomomentum density

The wave pseudomomentum density p = Nk is a subsystem momentum density in two important defining senses.
First, under the Lie—Poisson bracket of Eq. (5.4), the total wave momentum with components P; = f @2 Nk; d3x
generates an Eulerian spatial shift of the wave properties. namely the phase ¢ /¢ and its canonically conjugate
momentum density —a” N i.c..

3¢ do? N
oxi’ axi "
while leaving the fluid variables m. D. p invariant. Likewise. the total Eulerian momentum components M; =
[ mi d*x generate the corresponding Eulerian spatial shifts of the fluid properties (m, D, p) while leaving the wave
variables (—a”>N. ¢ /€) invariant. This can also be seen by using the definition m = —7,VI* in the canonical
Poisson bracket (5.3) to show that M; generates the infinitesimal spatial shifts,

P} = [Pa”N) = (5.10)

87‘(,\ A a[A
—, M 17 = —. 5.11
T MLt = (5.11)

{Mi.ma} =

while leaving the wave quantities (—a” N, ¢/€) invariant. Of course, then, the total momentum components, J(mi+
a’Nk;)d*x generate Eulerian spatial shifts in the ith direction for the entire wave mean-flow system, i.e., in all
these variables together.

Second, it is clear that

o’ Nk - dx = "N d¢ /e. (5.12)

Thus. the quantity a’Nk - dx is the canonical action one-form density in the phase space of wave properties which
leads to the symplectic two-form

QLume = > d(Nkj) A dx' = dN A do/e. (5.13)

Moreover, by Eq. (3.18) which relates the Eulerian momentum density m to the momentum 74 = SZ/(SIA,,
canonically conjugate to the Lagrangian fluid label (4. we have

D(ug + (2 xx)) - dx = (m+ a’Nk) - dx = =74 dI”* + &N dg/e. (5.14)

Consequently, the wave pseudomomentum density p = Nk and the Eulerian momentum density m enter the total
canonical action one-form density (5.14) on precisely the same footing and describe complementary aspects of the
wave-fluid system.
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5.2. Relative equilibria and critical points of constrained energy

Under the Lie—Poisson bracket (5.4) for the WMFI dynamics, the infinitesimal transformation generated by the
conserved quantities C¢ in (4.43) leaves invariant the Eulerian fluid variables m, D, o, N and k. since C¢ Poisson-
commutes with all of these variables for an arbitrary function, ®, of p and g. The corresponding infinitesimal
canonical transformation (gauge transformation) of the Lagrangian fluid labels {4 (x. ). A = 1, 2, 3, is given by

b
{Co. M) =¥ WA withf):D"Vpr%— and D = 1. (5.15)
q

Thus, Co generates a volume-preserving shift in the Lagrangian fluid labels along intersections of level surfaces of
density p and potential vorticity g, that also leaves invariant the fluid’s Eulerian momentum density, m, and wave
variables, N and k. The corresponding relative equilibrium flow of the WMFI equations is given by #1. = v with ¥
in (5.15).

The relative equilibrium solutions for WMFI dynamics are critical points of the sum H¢ = H4+v f d’x N+Co,
in which the function & is related to the Bernoulli function for the equilibrium solution and v is a constant. Two
obvious classes of equilibria are those for which there is either no wave amplitude, or the Lagrangian mean velocity
is constant. In these cases, one studies the effect of either small amplitude waves on an equilibrium mean flow, or
weak shear on an equilibrium wave field. The stability of these, and other relative equilibrium solutions may be
investigated by using constrained energy methods similar to those developed for Euler’s equations in the Boussinesq
approximation in [2].

6. Higher-order corrections
6.1. Averaging in HP and the equations of motion

Here we extend the averaged HP to include terms multiplied by a?¢ and a’¢2. The error in the action is then
of order O(ar*) which, as explained in the paragraph containing Eq. (3.10), gives an error of order O(a*€) in the
equations of motion. At this order, the averaged expressions for the kinetic and potential energy are exact. The only
truncation occurs in the incompressibility constraint imposed by the pressure as a Lagrange multiplier, in which we
ignore terms of order O(a*). The averaged action L is given by, cf. Eq. (3.10),

- bl 2.0 L~ ‘ d * d
.C:fdz/d“x D| LaL | + o lal* @’ — oeid (a~lt—1~va*-—a)
< det det

R da‘z
+ae|—| —
dr‘

p (1M D) g2+ T (2 x x) + 2?2 (a x @)

3 da* * da
+a“ef? - |a x +a" x —
det det

o ('92‘1)0
+(1 =D)| po+ ————
)[’ 0TS xions

o S ob
(d'a* +ala*y +a” (ikb + e—) -a*
dex

*

5 ab 5 . 0
+a~ <—ikb*+e, )-a}+a‘po[1ek~,— x (a x a*)
dex dex
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; d
20 0l I x) 2 P0
+€ (an/-a_*, —aa; )] + (b+a"’ 81"”) (ea —ik-a )

) m 9P0
+o (b* ™ m) (ea; + ik - a)O(oﬁ)] ©.1)
As in Section 5. the subscript with a comma denotes slow spatial derivatives, e.g., a = da'/dex’ and d/der =

a/det + E"L&)/de,\f.
The equation arising from stationarity of £ given by (6.1) under variations in pg at fixed x and 7 is
D=1- (xzez(aja*l)_jl + Oc'te) (6.2)
which implies
0 d
S T [(afa*’y,»,] + Otate). (6.3)
dex det ‘

Likewise. stationarity under variations in €/# at fixed x and ¢ implies the WMFI motion equation at this order, cf.
Eq. (3.15).

om/D) _ ( d m) L 1
P
der X\ Gex D) T ePEE

0Tl o o] ;
+§e;l:5.uLl +pL -« (_P uL+W>] O(a’e). (6.4)

The quantity @~ W is 1/ D times the (unconstrained) Lagrangian density due to the waves

5. .- da* da da |~
W=lal"0o- —€lw|a- -a"-—)—ke2 —
det det det
. da” da
+ 2082 - (a xa*)+ef2-(a>< +a*x—) (6.5)
det det
and p; is the Lagrangian mean of the total pressure
- 51 82[)() P % " «
pL=px+a.t)=p)+a 3 (a'a* +a~ a’)+ae—w (@b +ab*) + O(a’e). (6.6)
20xiox! dex

The Eulerian momentum density m now takes the form, cf. Eq. (3.16),

5L
m=_— =Dlu + (2 xx)| — ap. 6.7)
5uL

where p is the pseudomomentum density, given by, ¢f. [7].

pi_ 9§ (4§
D ax/ (dt+‘Q E)

N . da oa* da* Jda
=kj——eiw<a*->( —a- = .)—e()~(ax ‘ - +a* x —
D dex/ dext y dex/ dex/t

,{ oa da* da* da
en B 6.8
€ (é)exf der + dex’ det) (6.8)
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and N is the wave action density, cf. Eq. (3.17),

1 8L 5 da* da
N:—,—:D[Zla[‘w—ei(w —a* — | +2i2 - (a@axa)|. (6.9)
- Sw det der

Within the decomposition (2.3), Egs. (6.7)-(6.9) are exact.
Stationarity of £ given by (6.1) under variations in ¢, b*, and a* at fixed x and ¢ gives, respectively,

aN 9 ,
L4 L (@N +iD@ b — ab*)) = Ola’e). (6.10)
det  dex
5
e~ .a+ik-a=0(%) (6.11)
oex

and, cf. Eq. (3.20),

da da a2 da
<Dza+2€id)—&—t+eia——w _e2 +2[n x (idm-e—)]
€

det der? det
dab d\ad
—e—— — ibk — (a~,—)ﬂ=0(aze). (6.12)
dex dx ) 0x

Thus, transversality of the wave amplitude vector a is broken at order O(e) and, at the same order, this vector
becomes a prognostic variable, i.e., @ acquires its own dynamical equation. Neglecting terms of order O(¢) in
Egs. (6.2)—(6.12) recovers the equations of Section 3.2.

Looking toward the Hamiltonian formulation of these equations, it is convenient to introduce an auxiliary variable,
in terms of which many of the expressions in this section simplify and become more compact. We introduce the
momentum density a7, canonically conjugate to a* and defined as

1 5L

= S =
a=€ §(da*/der)

d
D(—i&)a+e—a+.(2><a). (6.13)
det

In terms of the canonical momentum 7r, we find the following simpler forms, cf. Egs. (6.5), (6.8), (6.9) and (6.12),
respectively:

W= %Fqnxaﬁ (6.14)
Nk — 2R da (6.15)

y; = Nkj —2Re | 7 - | . .

Pi ! Eae.\'f

N = —2Im(m -a¥). (6.16)

- d ob a1\ o 5

ia)ﬂ'—e—ﬂ-—}-(ﬂ’vDQxa)xQ~eD‘—~iDbkAD(a-,— pr:O(a‘e). 6.17)

der dex ox /) ox

For a prescribed mean flow, the last equation, together with (6.11) and the wave transport equation, ok/det =
dw/dex, determines the linearized evolution of a wave train perturbation with velocity v = Re(rwr/D — 2 x a)
relative to the Lagrangian mean velocity #p . This is the connection between the present theory and the WKB
wavepacket stability method. See, e.g., [33] for a clear exposition of the WKB stability method and references to its
modern applications. See [13] for a recent application of the WKB stability method to the stability of the Kirchhoff
ellipse in a rotating frame. However, unlike the WKB wavepacket equations discussed in [13,33], this restriction
of the higher-order WMFI equations does not reduce to ordinary differential equations along fluid characteristics.
Since the waves are not “frozen” into the fluid, the restricted WMFI equations remain partial differential equations
along fluid characteristics.
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Remark.  Another self-consistent WMFI theory may be derived at an intermediate order, in which the term of order
O(ar’€?) is neglected in the averaged action in Eq. (6.1). Neglecting this term replaces 7 by ' = D(—i@a+ 2 xa)
and reduces the dynamical equations fora to first order, in accordance with the usual theory of wave propagation with
slowly varying amplitudes. The equations of motion for this intermediate theory are summarized in Appendix A.

6.2. Noether symmetries at higher order

Invariance of £ in Eq. (6.1) under time translations leads to an energy conservation relation analogous to (4.17)
oW J
L s =0l (6.18)
det dex
where W is the total energy density, now given by
W/D = Sa | + a*im/D — 2 x al’ + pgz + Oa’e). (6.19)

where 7 is defined in Eq. (6.13) and S is the energy flux. which now takes the form

. » , da*! ‘ : da’
Y :Eﬁ(W +Dpy)+a°D |:b (z‘wa*-’ + €’ ) +b* (—iwa»’ + e—)]

det det
2 0p0 O g 5 5 0 L 0d o da* .
oa~e oxl E(cz a® +a*a') —a-e P 20 (a : el +a v + O(a’e). (6.20)

The momentum balance relation analogous to (4.21) is now

3G, 9T D D

(A L — 4 —pgdin+ — (2 x 1) = Oe’e). (6.21)

det dex/ € €
where the total momentum density G; is given by

Gi =m; +a’p; = DluL,; + (2 x x);). (6.22)

the wave pseudomomentum density p; is given in Eq. (6.15). and the momentum stress tensor T,-J at this order is
given by

!

T/ :H']{G,' + DﬁLﬁij — D [b(—ik,-a*»’ + eajj) + b (ikja’ + ea:é)]

> dpy 0 ; ; 5 5 0 .
— e 19— @la” +atay + ot [p()(a*fa/, + a»/a*,»[)] + O(a’e) (6.23)

dx! dex dex! : ‘
with additional order O(ea?) terms, relative to T,/ in Eq. (4.23).

As for £ of Eq. (3.11). the averaged action at higher order in Eq. (6.1), is invariant under the transformation
generated by €8C 1 (dp/318)(3/01"). Via an intermediate step analogous to Eq. (4.24) we obtain the local
conservation relation

oDy ad

— + — - Dgup. = O(a’e). (6.24)
et Jex

where the potential vorticity ¢ is defined by Eq. (4.26) but with m now explicitly taking the form (6.7) rather
than (3.16). That is.

B | dp a (_ 2D 0 6.25)
qiDax. Hexx w. —ap/D i xx)) )



374 1. Gjaja, D.D. Holm/ Physica D 98 (1996) 343-378

with pseudomomentum density p given in Eq. (6.8). Use of the continuity equation (3.7) for D (which is still exact)
then gives the local convection relation for g,

dg/ det = O(a*e). (6.26)

Remark on the Hamiltonian formulation of WMFI at higher order and the role of the pseudomomentum density. The
Hamiltonian formulation of the higher-order WMFI theory discussed in this section has the same Lie-Poisson
Hamiltonian structure as for the leading order WMFI dynamics discussed in Section 5, but with a new Eulerian
momentum density m defined by Eq. (6.7) instead of Eq. (3.16), and with a* and o7 as new canonically conjugate
wave variables, in addition to ¢ /e and —a?N. Thus, the Hamiltonian formulation of the higher-order WMFI
theory consists of a Poisson bracket which is the sum of the usual Lie-Poisson bracket for the fluid variables,
(m, D, p), with redefined m, plus a canonical Poisson bracket for the wave variables, (—aZN, ¢/€) and (a27r, a*).
In contrast to the phase variable ¢ /¢, however, the amplitude variable a* is not ignorable, and thus a2 does not
satisfy a conservation law, cf. Eq. (6.17). The wave and mean-flow variables are coupled through their (constrained)
Hamiltonian and possess the total momentum density, D@ + (§2 x x)) =m + azp. See [22] for full details.

6.3. Prescribed fluctuations

6.3.1. GLM theory

The present results can be restricted to recover the GLM theory of Andrews and Mclntyre [7] by taking the rapid
fluctuations as prescribed. This restriction of the WMF theory provides a variational formulation of the GLM theory.
The GLM theory follows upon replacing the decomposition of the pressure (2.11) by

3
px+af. 1) =pLx.t) + Zaj (hjeijtﬁ/e + h;e*iﬂﬁ/e). (6.27)
j=1

and then assuming that the rapidly fluctuating displacement £ is a prescribed function of x and ¢, which satisfies
the transversality condition (6.29) below. Since no variations of the averaged action are to be taken with respect to
a or ¢, it is not necessary to use the explicit form of £ given by (2.5). The averaged action is
—u .
‘o ar 2 BCFTTY

=/dt/d3x= [wu +7 e

3
( (x, t))g‘+uL (Qxx)+a n 2 xEH+a 5 - (82 x 5):|

=3 [1 D+ fi(sfﬁ —sfﬁ)}

dxJ dx/

2 0€ B8E o’ o g o9

+
a (04

. 9&d . 3E]
+a’ [hle"f’/fg% + hje 1o/ aii] +0(a4)] . (6.28)

The neglected terms are independent of /4 and its derivatives and of ; .
The variation of £ of Eq. (6.28) with respect to /1| at fixed x and r yields

eiore %8 _ 0le). (6.29)
ax/
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which with the form of £ given in (2.5) can be written as, cf. Eq. (6.11),

5 |
e; -a+ik-a=0(a"e). (6.30)
dex

Likewise. the variation of £ with respect to p; at fixed x and 1 gives

D=1+"7—~a‘hl (s"’g o ) (631)

ax/ ox/

and the variation with respect to /* results in the GLM motion equation.

om/D)  _ ( d m N |
-y x | — x — —pg3
det L dex D epg“

9 [ ol .
+ Tex l:PL + lal” — EME ut —ut (2 x € —ap -ul_/D] =0, (6.32)

where m and p are defined in Eqs. (6.7) and (6.8). respectively. Here we have adopted the notation of Andrews and
Mclntyre [7) 4 = Ufx + o€, 1) to write

YLl — oW = [aL|” — uf uf —uf (02 % §). (6.33)

Formally, no truncation in & or € has been effected in Egs. (6.31) and (6.32). Using the definition of £ in Eq. (2.5)
and the transversality condition (6.30). the constraint (6.31) reduces to Eq. (6.2). Egs. (6.29), (6.31) and (6.32)
are the equations of the GLM theory for incompressible flow discussed in [7]. Not unexpectedly. the Hamiltonian
structure for the higher-order WMFI equations of the previous section formally reproduces these GLM equations
when the wave displacement §(x. 1) 1s a prescribed quantity, see [22].

Cautionary note. In view of our earlier discussion in Section 2.4, in the case of prescribed fluctuations the averaging
theorem does not lead to Eqs. (2.17). (2.18) and (2.27) (or, at higher order, to Egs. (6.2), (6.4) and (6.11) or (6.29),
(6.31) and (6.32)), unless the prescribed fluctuations happen to satisfy the projection conditions in Eqgs. (2.28)
and (2.29) (or. at higher order, (6.10) and (6.12)) relating the amplitude, phase, and phase derivatives of the fluctu-
ations. If these conditions are not met by the prescribed fluctuations, the decomposition into mean and prescribed
fluctuating quantities will not be preserved in time.
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Appendix A. WMFI equations at intermediate order and conservation of wave angular momentum

Neglecting terms of order O(a”¢”) in Section 6.1 and suppressing the asymptotic order estimates yields the
following self-consistent WMFI equations (with D = 1) :

( d i d )7 | (_ 10 . éip(,) N ( a i d ) n d
— 4 u - u, — - (uy x 202 — pgf — — | —«~ — C— » -
det L dex L € b P8 ox “ et L dex P [/d L

o€ d J .
+ - (ab* +a*h)| =0 (A.1)
2 dex | dex
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with
dp aN B ok dw
— =0, — + — -(aN +i@b—-ab*))=0, — +—=0. A2
dr det * Jex (uL +i(a 4 )) o€t Oex (A-2)
The quantities N and p are defined by
1 8L da* da
N=a—2%=2lalzd)—ei(a~ dEl—a*-E)—kZz’ﬂ-(axa*) (A.3)
and
da*
pj =kjN +2Re|¢€ - . (lwa — 2 xa)|. (A.4)
dex/

We recall from Eq. (4.14) that the Stokes mean drift velocity is given by the similar, but different, expression

) : ,
is = a’e2 Rea (iva'a*) + O(a?e?, o). (A.5)

ex'
So the pseudomomentum density «°p and the Stokes mean drift velocity &g are different quantities of different
magnitudes which cannot be mistaken for each other.
The diagnostic variables, pg. b, and @ = @ — u - k and the prognostic variable a are determined from the
constraints (again with D = 1)
9 _ 0 .
— -up =0, ce— a+ik-a=0 (A.6)
Jdex dex

and the dynamical equation for the vector wave amplitude, a,

@’a +2io(2 x a) — kb — (ai) dpo +€ (zi@ﬁ +ia2 ok 3 8—b) =0. (A7)
ox ) ox der det der  Oex
These equations result from HP with action L in (6.1) truncated at order O(eza2) to remove only the term
€a?| da/ det|? from its integrand. The truncated HP at this order is invariant under translations in phase ¢ because
of averaging, as usual. However, it is also invariant under the restricted phase shift (3.22). By Noether’s theorem,
this restricted phase invariance implies that the quantity

N' = D(2lal*® +2if2 - (a x a*)). (A8)
is a conserved density, satisfying, cf. Eq. (A.2),

aN’ a

— 4+ — (N'uL +il@b—-ab*)) =0. A.

e + Ser (NuL +i@*b—ab*)) =0 (A9)

The same conservation law can be obtained by taking the imaginary part of a* - (A.7). Therefore the difference
of the conservation laws for N and N’ gives a new WMFI conservation law at this intermediate truncation order.
Indeed, this difference gives

d , da
Lim (a 'E) ~0 (A.10)

which is conservation of (N — N’)/D on fluid parcels. Writing a; = ri exp(i6x). k = 1,2, 3 (no sum) expresses
the quantity

da 3 A6
I . — ) = c— A.ll
m(a det) l;rk det ¢ )
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as a “wave angular momentum” which by Eq. (A.10) is embedded in the mean flow. In the lowest order WMFI theory
discussed in Section 3.2, invariance of £ in (3.11) under the restricted phase shift (3.22) has trivial consequences —
its conserved density is a pure gauge. At this intermediate order, invariance of £ in (6.1) truncated at order O(a?€?)
under the restricted phase shift produces the new convection law (A.10) for wave angular momentum. In the highest
order WMFI theory of Section 6, invariance of £ in (6.1) under the restricted phase shift produces the same result
as translation invariance in ¢ does, namely the wave action conservation law for N in (6.9) or (A.3) and the wave
angular momentum convection law (A.10) is lost at that order.

One approach to the solution of this system at the intermediate truncation order is to expand all variables in
powers of € and solve using matched asymptotics. For convenience we write a in the form

a(ex. €t) = a(ex. €t)é(ex, €t). (A.12)

where the displacement magnitude a(ex, €7) is real. Then, at order O(1), Eq. (A.7) determines the (unit) polarization
vector &, but leaves the magnitude ¢ and the overall phase of & undetermined. The magnitude a is determined by
the initial value of the conserved density N’ and its subsequent evolution, cf. Eq. (A.9). The overall phase of &, on
the other hand, is determined from the initial value of Im(a* - da/det), which is preserved on fluid parcels at this
intermediate truncation order.
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